303

## Spectral properties and energy transfer in YAlO<sub>3</sub> crystals doped with Ce ions and Mn ions

Dunhua Cao (曹顿华)<sup>1,2</sup>, Guangjun Zhao (赵广军)<sup>1\*</sup>, Qin Dong (董 勤)<sup>1,2</sup>, Jianyu Chen (陈建玉)<sup>1,2</sup>, Yan Cheng (程 艳)<sup>1,2</sup>, and Yuchong Ding (丁雨憧)<sup>1,2</sup>

<sup>1</sup>Key Laboratory of Material Science and Technology for High Power Lasers,

Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China

<sup>2</sup>Graduate University of Chinese Academy of Sciences, Beijing 100049, China

\*E-mail: zhaoguangjun@163.net

Received May 15, 2009

We report the luminescence properties and decay profiles of Ce:YAlO<sub>3</sub>, Mn:YAlO<sub>3</sub>, and Ce,Mn:YAlO<sub>3</sub> crystals grown by Czochralski method. The spectroscopic properties show that both  $Mn^{2+}$  ions and  $Mn^{4+}$  ions exist in Mn:YAlO<sub>3</sub> and Ce,Mn:YAlO<sub>3</sub> crystals. The  $Mn^{2+}$  ions have a broad emission band of 60 nm in Mn-doped YAlO<sub>3</sub> crystal at 530 nm. The luminescence spectra also indicate that there is significant energy transfer between Ce<sup>3+</sup> and Mn<sup>4+</sup> in Ce,Mn:YAlO<sub>3</sub> crystal. Because of the energy transfer, the first decay component in Ce,Mn:YAlO<sub>3</sub> decreases from 24.5 to 10.8 ns, which is much faster than that of Ce:YAlO<sub>3</sub>.

OCIS codes: 160.5690, 300.1030, 300.2140, 300.6560. doi: 10.3788/COL20100803.0303.

In recent years, the yttrium orthoaluminate (YAlO<sub>3</sub>) crystal is a widely useful host material with such diverse applications as optical recording media, scintillators, and solid state lasers. YAlO<sub>3</sub> doped with manganese was shown to be a promising material for holographic recording and optical data storage<sup>[1,2]</sup>. As a scintillator, Ce:YAlO<sub>3</sub> has many attractive properties, such as fast decay, high light yield, and good energy resolution<sup>[3-5]</sup>. YAlO<sub>3</sub> crystals doped with Mn ions and Ce ions have been reported<sup>[6]</sup>, and it is revealed that the valence of Mn ions in the Ce,Mn:YAlO<sub>3</sub> crystal is changed, but the mechanism of interactions between Mn ions and Ce ions in YAlO<sub>3</sub> is not clear yet. In this letter, we study the luminescence properties and decay profiles of YAlO<sub>3</sub> crystal doped with Mn ions and Ce ions.

YAlO<sub>3</sub> has a distorted perovskite structure<sup>[7]</sup> that belongs to the orthorhombic  $P_{nma}$  space group with parameters of a = 0.5180 nm, b = 0.7375 nm, c =0.5330 nm. Because of the distortion, the coordination number of Y<sup>3+</sup> is close to 8, and the ionic radius of Y<sup>3+</sup> is 0.1019 nm. Al<sup>3+</sup> sites in YAlO<sub>3</sub> have almost ideal octahedral symmetry with an ionic radius of 0.0535 nm. The Ce<sup>3+</sup> ions (0.103 nm) enter the YAlO<sub>3</sub> lattice, substituting for Y<sup>3+</sup> ions. Mn<sup>2+</sup> ions (0.096 nm) and Mn<sup>4+</sup> ions (0.053 nm) may provide charge compensation for each other, substituting for Y<sup>3+</sup> ions and Al<sup>3+</sup> ions, respectively.

In this letter, Ce:YAlO<sub>3</sub>, Mn:YAlO<sub>3</sub>, and Ce, Mn: YAlO<sub>3</sub> crystals are grown with the dimensions of  $\Phi$  55× 150 (mm) (Ce:YAlO<sub>3</sub>) and  $\Phi$  25× 60 (mm), respectively. The luminescence properties and decay kinetics of the crystals are investigated. The Mn<sup>4+</sup> ions display the emission peaking at 714 nm, while the Mn<sup>2+</sup> ions display the emission peaking at 530 nm. Because of energy transfer between Ce<sup>3+</sup> and Mn<sup>4+</sup>, the emission intensity of Mn<sup>4+</sup> ions at 714 nm becomes much stronger, and the Ce<sup>3+</sup> ions show considerable faster decay time in comparison with the result of Ce:YAlO<sub>3</sub>. The fast decay component of Ce,Mn:YAlO<sub>3</sub> is only 10.8 ns, less than half of that of Ce:YAlO<sub>3</sub>. This makes Ce,Mn:YAlO<sub>3</sub> attractive in the application of scintillators with ultrashort decay time.

To grow Ce:YAlO<sub>3</sub>, Mn:YAlO<sub>3</sub>, and Ce,Mn:YAlO<sub>3</sub> crystals, the materials was prepared with highly pure  $Y_2O_3(5N)$ ,  $Al_2O_3(5N)$ ,  $MnO_2(3N)$ , and  $CeO_2(4N)$ , in concentrations of (Ce:YAlO<sub>3</sub>) 0.1 at.-%; (Ce,Mn:YAlO<sub>3</sub>)  $0.1 \text{ at.-\%}, 0.5 \text{ at.-\%}; (Mn:YAlO_3) 0.5 \text{ at.-\%}, respectively.$ The distribution coefficients of Mn and Ce in YAlO<sub>3</sub> crystal are estimated as  $0.11^{[8]}$  and 0.5 respectively. The crystals were grown by the Czochralski method with radio frequency induction heating iridium crucible. The temperature-control apparatus was EUROTHERM 818 controller/programmer with a precision of  $\pm 0.5$  °C. The wriggly distance of pulling apparatus was less than 1  $\mu$ m. The growth atmosphere was N<sub>2</sub>. The crystals were grown by using b-direction YAlO<sub>3</sub> single crystal seeds with dimensions of  $4.5 \times 4.5 \times 20$  (mm). The pulling rate was 1–2 mm/h after the crystal diameter reached a certain value, and the crystal was rotated at a rate of 10–30 rpm during growth. The details were described in Ref. [9]. As-grown Ce,Mn:YAlO<sub>3</sub> crystal has pinkish color, while Mn:YAlO<sub>3</sub> crystal is orange. The photographs of the crystals are shown in Fig. 1.

Samples for optical measurements were cut into polished plates being  $10 \times 10 \times 2$  (mm) in dimensions. Luminescence spectra and lifetime were measured with LS-55 fluorescence spectrometer from Perkin-Elmer. Transmission spectra were taken with the ultraviolet/visible (UV/Vis) spectrophotometer (Mode V-570, JASCO). The X-ray excited luminescence (XEL) spectra were measured on an X-ray excited spectrometer under the same condition (35 kV, 20 mA) at room temperature, and the spectra were obtained by SBP300 grating monochromator and Hamamatsu CR131 photomultiplier tube (PMT) with the data acquired by computer. Decay time measurements (1–5000 ns) were performed under ultrashort



Fig. 1. Photographs of as-grown (a)  $Ce,Mn:YAlO_3$ , (b)  $Mn:YAlO_3$ , and (c)  $Ce:YAlO_3$  crystals.



Fig. 2. Excitation and emission spectra of (a) Ce:YAlO<sub>3</sub>, (b) Mn:YAlO<sub>3</sub>, and (c) Ce,Mn:YAlO<sub>3</sub> crystals.

pulsed X-ray (30 kV) and detected by photomultiplier XP2020Q at 295 K, and the system impulse response for the facility was less than  $120 \text{ ps}^{[10]}$ .

The luminescence properties of Ce:YAlO<sub>3</sub>, Mn:YAlO<sub>3</sub>, and Ce,Mn:YAlO<sub>3</sub> crystals are presented in Fig. 2. The emission band of Ce:YAlO<sub>3</sub> crystal peaking at 365 nm and the excitation bands peaking at 290 and 302 nm are due to 5d–4f transition of Ce<sup>3+</sup> ions. The emission band of Mn:YAlO<sub>3</sub> and Ce,Mn:YAlO<sub>3</sub> peaking at 714 nm are assigned to  ${}^{2}E{}^{-4}A_{2}$  transition of Mn<sup>4+</sup> ions, and the emission peaking at 685 nm is the anti-Stokes vibronic side band<sup>[6]</sup>. The excitation bands at 332, 373, and 480 nm ( $\lambda_{\rm em} = 714$  nm) are assigned to  ${}^{4}A_{2} \rightarrow {}^{4}T_{1}({}^{4}F)$ ,  ${}^{4}A_{2} \rightarrow {}^{4}T_{1}({}^{4}P)$ , and  ${}^{4}A_{2} \rightarrow {}^{4}T_{2}$ Mn<sup>4+</sup> transitions, respectively<sup>[11]</sup>. The Ce<sup>3+</sup> emission of Ce,Mn:YAlO<sub>3</sub> peaks at 400 nm, the red shift of the emission band can be attributed to the low transmission of the sample in the region of 330–375 nm. The transmission spectra of the samples are shown in Fig. 3, indicating the 480-nm absorption of Mn:YAlO<sub>3</sub> and Ce,Mn:YAlO<sub>3</sub> due to  ${}^{4}A_{2} \rightarrow {}^{4}T_{2}$  Mn<sup>4+</sup> transition.

The XEL spectra of the samples are shown in Fig. 4. The luminescence spectra of  $Ce^{3+}$  and  $Mn^{4+}$  ions excited by X-ray are similar to those in Fig. 2. The broad bands peaking at 530 nm in both Mn:YAlO<sub>3</sub> and Ce,Mn:YAlO<sub>3</sub> are due to  ${}^{4}T_{1} \rightarrow {}^{6}A_{1}$  Mn<sup>2+</sup> transition<sup>[6]</sup>.

Figures 1 and 2 show apparent spectral overlapping between  $Ce^{3+}$  luminescence and  $Mn^{4+}$  excited spectra in the 320–420 nm region, indicating that there are energy transfer between  $Ce^{3+}$  and  $Mn^{4+}$ . In Fig. 4, the strength of 530-nm  $Mn^{2+}$  emission of Mn:YAlO<sub>3</sub> and Ce,Mn:YAlO<sub>3</sub> are similar, but Ce,Mn:YAlO<sub>3</sub> has much stronger emission at the peak of 714 nm. Considering the same experiment condition of the XEL spectra measurement and the same concentration of Mn ions, the enhancement of the emission at 714 nm can be attributed to the energy transfer from Ce<sup>3+</sup> ions.



Fig. 3. Absorption spectra of Ce:YAlO<sub>3</sub>, Mn:YAlO<sub>3</sub>, and Ce,Mn:YAlO<sub>3</sub> crystals.



Fig. 4. XEL spectra of Ce:YAlO<sub>3</sub>, Mn:YAlO<sub>3</sub>, and Ce,Mn: YAlO<sub>3</sub> crystals.



Fig. 5. Decay kinetics of (a) Ce,Mn:YAlO<sub>3</sub> and (b) Ce:YAlO<sub>3</sub> crystals.



Fig. 6. Luminescence kinetics of  $Mn:YAlO_3$  and  $Ce,Mn:YAlO_3$  crystals.

Table 1. Parameters of Decay Time of Ce:YAlO<sub>3</sub>, Mn:YAlO<sub>3</sub>, and Ce,Mn:YAlO<sub>3</sub> Crystals

| Crystal              | $\tau_1$ (ns) | $\tau_2 (\mathrm{ns})$ | $I_1$ (%) | $I_2 \ (\%)$ |
|----------------------|---------------|------------------------|-----------|--------------|
| Ce:YAlO <sub>3</sub> | 24.5          | 75.8                   | 59.4      | 40.6         |
| $Ce,Mn:YAlO_3$       | 10.8          | 34.6                   | 57.6      | 42.4         |
| $Mn:YAlO_3$          | None          | None                   | None      | None         |

The decay curves under pulsed X-ray excitation are shown in Fig. 5. The decay time was calculated using the following approximation of decay curve:

$$S(t) = y_0 + \sum_{i=1}^{N} \frac{1}{2} I_i \tau_i^{-1} \exp\left[-\tau_i^{-1} \left(t - T_0 - \frac{1}{4} \tau_i^{-1} \sigma^2\right)\right] \\ \times \left\{1 - \operatorname{erf}\left[\frac{1}{2} \tau_i^{-1} \sigma - (t - T_0) / \sigma\right]\right\},$$
(1)

where N is the fitted number of multi-exponential approximation of the decay curve,  $\tau_i$  is the mean time,  $I_i$ is the relative intensity for component  $i, y_0$  is the background, and  $\sigma$  is the system impulse response. The decay time results are listed in Table 1. The decay curves of Ce:YAlO<sub>3</sub> and Ce,Mn:YAlO<sub>3</sub> are approximated by the sum of two exponentials with decays  $\tau_1=24.5$  ns and  $\tau_2 = 75.8$  ns, and  $\tau_1 = 10.8$  ns and  $\tau_2 = 34.6$  ns, respectively. The result of Ce:YAlO<sub>3</sub> is similar to those reported<sup>[3]</sup>, and the slow component may be caused by defects in the sample<sup>[12]</sup>. However, the decay time of Ce,Mn:YAlO<sub>3</sub> shows a significant decrease, especially, the first component decreases from 24.5 to 10.8 ns. The shortening of decay time of the  $Ce^{3+}$  emission can be caused by the presence of non-radiative energy transfer, which confirms the energy transfer between  $Ce^{3+}$  and  $Mn^{4+}$ . For the interaction between  $Ce^{3+}$  and  $Mn^{4+}$ , the energy may transfer from Ce<sup>3+</sup> 5d excited levels to the  ${}^{4}T_{1}({}^{4}F)$ ,  ${}^{4}T_{1}({}^{4}F)$ , and  ${}^{4}T_{2}$  Mn<sup>4+</sup> energy levels, then to the  ${}^{2}E$  level of Mn<sup>4+</sup>, and finally the  ${}^{2}E{}^{-4}A_{2}$  Mn<sup>4+</sup> transition with the emission peaking at 687–714 nm.

The decay time measurement of Mn:YAlO<sub>3</sub> has no readout (Table 1), which indicates that the broad band peaking at 530 nm is very slow. The luminescence decays of Mn<sup>4+</sup> ( $\lambda_{ex} = 350$  nm) at 714 nm in Mn:YAlO<sub>3</sub> and Ce,Mn:YAlO<sub>3</sub> are depicted in Fig. 6, both nearly to be 2.4 ms.

In conclusion, Ce:YAlO<sub>3</sub>, Mn:YAlO<sub>3</sub>, and Ce,Mn:-

YAlO<sub>3</sub> crystals have been grown by Czochralski method. The characteristics of photoluminescence and XEL, and the lifetime of the crystals are studied at room temperature. The luminescence properties show the existence of  $Mn^{2+}$  ions and  $Mn^{4+}$  ions in  $Mn:YAlO_3$  and Ce,Mn:YAlO<sub>3</sub> crystals. The  $Mn^{4+}$  ions have the emission peaking at 714 nm, and the  $Mn^{2+}$  ions emission peaking at 530 nm. The results of spectra and decay time measurements show that there is significant energy transfer between  $Ce^{3+}$  and  $Mn^{4+}$  ions in  $Ce,Mn:YAlO_3$ . Because of the energy transfer,  $Ce,Mn:YAlO_3$  has much stronger emission at the peak of 714 nm and faster decay time than those observed in Mn:YAlO<sub>3</sub> and Ce:YAlO<sub>3</sub> samples, respectively. The fast decay component of  $Ce,Mn:YAlO_3$  decreases from 24.5 to 10.8 ns, thus the luminescence decay in the material is distinctly shortened, and this may be hopeful to improve the properties of Ce-doped scintillator in terms of time efficiency. In addition, for better understanding of the spectroscopic properties of Ce,Mn:YAlO<sub>3</sub>, it will be helpful to compare the characteristics of  $Y_3Al_5O_{12}$  doped with Mn ions and Ce ions in the future.

This work was supported by the National Natural Science Foundation of China (No. 60607015), the Shanghai Key Basic Research Program (No. 09JC1414900), and the Optics Science and Technology Foundation of Shanghai City (No. 09DZ1142002).

## References

- G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller, III, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H. J. Caulfield, and P. Venkateswarlu, Phys. Rev. B 57, 3706 (1998).
- M. A. Noginov, N. Noginova, M. Curley, N. Kukhtarev, H. J. Caulfield, P. Venkateswarlu, and G. B. Loutts, J. Opt. Soc. Am. B 15, 1463 (1998).
- S. Baccaro, K. Blažek, F. de Notaristefani, P. Maly, J. A. Mares, R. Pani, R. Pellegrini, and A. Soluri, Nucl. Instrum. Methods Phys. Res. A 361, 209 (1995).
- V. G. Baryshevsky, M. V. Korzhik, B. I. Minkov, S. A. Smimova, A. A. Pyodorov, P. Dorenbos, and C. W. E. van Eijk, J. Phys.: Condens. Matter 5, 7893 (1993).
- M. Moszyński, M. Kapusta, D. Wolski, W. Klamra, and B. Cederwall, Nucl. Instrum. Methods Phys. Res. A 404, 157 (1998).
- M. A. Noginov, G. B. Loutts, and M. Warren, J. Opt. Soc. Am. B 16, 475 (1999).
- L. Han, L. Wei, J. Wu, Y. Zheng, J. Chen, and K. Wang, Chinese J. Lasers (in Chinese) 35, (Suppl.) 29 (2008).
- M. A. Noginov and G. B. Loutts, J. Opt. Soc. Am. B 16, 3 (1999).
- G. Zhao, X. Zeng, C. Xia, S. Zhou, S. Li, and J. Xu, J. Cryst. Growth 267, 522 (2004).
- S. E. Derenzo, W. W. Moses, S. C. Blankespoor, M. Ito, and K. Oba, IEEE Trans. Nucl. Sci. 41, 698 (1994).
- G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer, New York, 1994).
- A. J. Wojtowicz, J. Glodo, A. Lempicki, and C. Brecher, J. Phys.: Condens. Matter 10, 8401 (1998).